Inversion Layer Effective Mobility Model for Pocket Implanted Nano Scale n-MOSFET
نویسنده
چکیده
Carriers scattering in the inversion channel of nMOSFET dominates the drain current. This paper presents an effective electron mobility model for the pocket implanted nano scale n-MOSFET. The model is developed by using two linear pocket profiles at the source and drain edges. The channel is divided into three regions at source, drain and central part of the channel region. The total number of inversion layer charges is found for these three regions by numerical integration from source to drain ends and the number of depletion layer charges is found by using the effective doping concentration including pocket doping effects. These two charges are then used to find the effective normal electric field, which is used to find the effective mobility model incorporating the three scattering mechanisms, such as, Coulomb, phonon and surface roughness scatterings as well as the ballistic phenomena for the pocket implanted nano-scale n-MOSFET. The simulation results show that the derived mobility model produces the same results as found in the literatures. Keywords—Linear Pocket Profile, Pocket Implanted n-MOSFET, Effective Electric Field and Effective Mobility Model.
منابع مشابه
Analytical Subthreshold Drain Current Model Incorporating Inversion Layer Effective Mobility Model for Pocket Implanted Nano Scale n-MOSFET
Carrier scatterings in the inversion channel of MOSFET dominates the carrier mobility and hence drain current. This paper presents an analytical model of the subthreshold drain current incorporating the effective electron mobility model of the pocket implanted nano scale n-MOSFET. The model is developed by assuming two linear pocket profiles at the source and drain edges at the surface and by u...
متن کاملAn Analytical Subthreshold Drain Current Model for Pocket Implanted Nano Scale n-MOSFET
This paper presents an analytical subthreshold drain current model for pocket implanted nano scale nMOSFET. The model is developed by using the linear pocket profiles at the source and drain edges and by solving the Poisson's equation in the depletion region at the surface with the appropriate boundary conditions at source and drain for deriving the surface potential. The model includes the eff...
متن کاملA New Mobility Model for Pocket Implanted Quarter Micron n-MOSFETs and Below
A new, analytical, physical-based effective surface mobility model valid in all regimes of device operation from weak to strong inversion is introduced. The model accounts for all relevant scattering processes vs. the electric field and temperature as well as for the lateral non-uniform 2-D doping profile in pocket implanted MOSFETs. Measurements show that the mobility degradation due to Coulom...
متن کاملA Novel Hybrid Nano Scale MOSFET Structure for Low Leak Application
In this paper, novel hybrid MOSFET(HMOS) structure has been proposed to reduce the gate leakage current drastically. This novel hybrid MOSFET (HMOS) uses source/drain-to-gate non-overlap region in combination with high-K layer/interfacial oxide as gate stack. The extended S/D in the non-overlap region is induced by fringing gate electric field through the high-k dielectric spacer. The gate leak...
متن کاملLinear Profile Based Analytical Surface Potential Model For Pocket Implanted Sub-100 nm n-MOSFET
This paper presents an analytical surface potential model for pocket implanted sub-100 nm nMOSFET. The model is derived by solving the Poisson's equation in the depletion region at the surface with the appropriate boundary conditions at source and drain. The model includes the effective doping concentration of the two linear pocket profiles at the source and drain sides of the device. The model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011